

GUIA DE QUIMICA PARA EXAMEN EXTRAORDINARIO

Junio 2025

Elaboró: M.C Adalilia Córdova Reyna

Dra. Irene de Jesús Martínez Segoviano

TEMARIO

UNIDAD I. ELEMENTOS QUÍMICOS EN LOS DISPOSITIVOS MÓVILES.

TEORÍA: DEBERÁS ESTUDIAR LOS CONCEPTOS DE: MATERIA, ATOMO, PARTICULAS SUBATÓMICAS, ISÓTOPOS, IONES, CONFIGURACIÓN ELECTRÓNICA, MODELO DE BOHR, ESTRUCTURA DE LEWIS, ORBITALES, NÚMEROS CUÁNTICOS, CAMBIOS FÍSICOS Y QUÍMICOS, PROPIEDADES FÍSICAS Y QUÍMICAS, ESTADOS DE AGREGACIÓN DE LA MATERIA, SUSTANCIAS PURAS: ELEMENTOS, COMPUESTOS, MEZCLAS, MÉTODOS DE SEPARACIÓN. PROPIEDADES PERIÓDICAS, NOMENCLATURA QUÍMICA. ELEMENTOS QUÍMICOS EN LOS DISPOSITIVOS MÓVILES, PRINCIPALES YACIMIENTOS EN MÉXICO Y EL MUNDO.

Instrucciones específicas: Completa las siguientes tablas, de acuerdo a lo que se indica.

Nombre del Elemento	¹⁹ ₃₉ K	16 32 S	19°F	¹⁷ ₃₅ Cl
1.La masa atómica <u>(A)</u>	39			35
2. El número atómico (Z)		16		
3.El número de protones P+				
4.El número de electrones e			9	
5.El número de neutrones n [±]				
6.Los electrones de valencia				
7.La configuración electrónica				

8.Modelo de Bohr				
9. La estructura de Lewis Para cada elemento				
10. Calcula la diferencia de electronegatividades (DEN) e indica el tipo de enlace de los siguientes compuestos	KCl	CH₄	SF ₄	PCl ₃
Valores de EN de Pauling	H= 2.2 P=2.2 S= 2.5	C=2.6 Cl=3.2	K= 0.82 F= 4	
11. La estructura de Lewis			•	
Del KCI				
12 La estructura de Lewis				
Del SF ₄				
13. La estructura de Lewis				
Del CCI4				

14. Cálculo de partículas subatómicas. Determina las partículas subatómicas que faltan.

símbolo	Nombre	Z	Α	electrones	Protones	neutrones
Cu	Cobre	29	63.5		29	34.5
In			114.82	49	49	
Ва				56		81.33
Fe		26				30

Instrucciones específicas: Elabora la molécula correspondiente e indica su nombre.

	CATIÓN	ANIÓN	FÓRMULA	NOMBRE
15.	Rb ¹⁺	O ²⁻		
16.	H ¹⁺	F ¹ -		
17.	Ag ¹⁺	(NO3) ¹⁻		
18.	Fe ³⁺	(OH) ¹⁻		
19.	Be ²⁺	H ¹⁻		
20.	H ¹⁺	(CIO4) ¹⁻		
21.	Fe ²⁺	O ²⁻		

UNIDAD II: CONTROL DE LAS EMISIONES ATMOSFÉRICAS EN LASGRANDES URBES

TEORÍA: DEBERÁS ESTUDIAR LOS CONCEPTOS DE: PROPIEDADES DE LOS GASES, COMPONENTES DEL AIRE, CONTAMINANTES PRIMARIOS Y SECUNDARIOS EN LA ATMÓSFERA, LEYES DE LOS GASES, REACCIONES DE COMBUSTIÓN. TIPOS DE REACCIONES QUÍMICAS. BALANCEO POR TANTEO Y RÉDOX.

Instrucciones específicas: ¿Qué tipo de reacción es? Balancea por tanteo

22.	$(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + H_2O + N_2$	
23.	$MgO + H_2O \rightarrow Mg(OH)_2$	
24.	FeCl ₂ + Na ₃ PO ₄ \rightarrow Fe ₃ (PO ₄) ₂ + NaCl	
25.	Cl_2 + NaBr \rightarrow NaCl + Br ₂	
26.	$NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$	
27.	$Al + MnO_2 \rightarrow Al_2O_3 + Mn$	
28.	$Al + O_2 \rightarrow Al_2O_2$	

Instrucciones específicas: Resuelve los siguientes problemas de gases.

- 29. Se tiene 4 litros de un gas que están a una presión de 600mmHg ¿Cuál será su nuevo volumen cuando la presión aumente hasta 800mmHg?
- 30. Calcula el número de moles que contiene un gas que ocupa un volumen de 3 L a 25°C y 740 mm de Hg de presión.
- 31. Un globo lleno de Helio (He) tiene un volumen de 50,000 ml y se encuentra a 25°C y a una presión de 1.08 atm. ¿Qué volumen ocupará a 649.8 mm Hg y 10°C?
- 32. Dentro de las cubiertas de un coche el aire está a 15°C de temperatura y 2 atmósferas de presión. Calcular la presión que ejercerá ese aire si la temperatura, debido al rozamiento sube a 45°C.
- 33. Calcula el número de moles ocuparán 16.4 litros de un gas a 5 atm de presión y a una temperatura de 500 K?

Instrucciones específicas: Resuelve los siguientes problemas por estequiometría, recordando balancear la ecuación química antes de realizar los cálculos.

34. De acuerdo a la siguiente reacción de combustión completa del propano

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

- a) ¿Cuántos moles de dióxido de carbono se producen a partir de 15 moles de propano (C₃H₈) con exceso de oxígeno?
- b) ¿Cuántos gramos de CO_2 , se producen a partir de 5 moles de propano?
- c) ¿Cuántos moles de agua se producen a partir de 2 kg de propano (C₃H₈) con exceso de oxígeno?
- 35. Haciendo pasar vapor de agua sobre carbón incandescente, se produce un gas sumamente tóxico, el monóxido de carbono, CO conforme a la siguiente reacción:

$$C + H_2O \rightarrow CO + H_2$$

- a) ¿Cuántos moles de gas hidrógeno se producen a partir de 20 moles de carbono?
- b) Determina la masa de monóxido de carbono CO, producido si se pasan 3.56 moles de vapor de agua sobre carbón incandescente.
- c) ¿Cuántos moles de CO se producen a partir de 5 kg de carbono?
- 36. El cloroformo CHCl₃ es preparado industrialmente por la reacción del metano con el cloro. ¿Cuántos gramos de cloro se necesitan para producir 1.5 moles de cloroformo?

$$CH_4 + Cl_2 \rightarrow CHCl_3 + HCl$$

37. El amoniaco (NH₃) se forma por reacción de nitrógeno con hidrógeno. Si se dispone de 420 g de nitrógeno, ¿cuántos moles de amoniaco se forman?

$$N_2 + H_2 \rightarrow NH_3$$

INSTRUCCIONES: Método REDOX. Asignar los números de oxidación de cada elemento, las semirreacciones de Oxidación y Reducción, así como cuál es el agente reductor y el agente oxidante. Finalmente, usar el método Redox y escribir las ecuaciones balanceadas.

38. $H_2S+ HNO_3 \rightarrow S + NO + H_2O$
Semirreacciones OXIDACIÓN:
REDUCCIÓN:
Agente oxidante: Agente reductor:
Operaciones para balancear:
Ecuación balanceada final:
39. CuS + O ₂ → CuO + SO ₂
Semireacciones OXIDACIÓN:
REDUCCIÓN:
Agente oxidante: Agente reductor:
Operaciones para balancear:
Ecuación balanceada final:
40. Cu + O ₂ → Cu ₂ O

Semireacciones OXIDACIÓN:
REDUCCIÓN:
Agente oxidante: Agente reductor:
Operaciones para balancear:
Ecuación balanceada final:
41. $H_3PO_4 + C \rightarrow P_4 + CO + H_2O$
Semireacciones OXIDACIÓN:
REDUCCIÓN:
Agente oxidante: Agente reductor:
Operaciones para balancear:
Ecuación balanceada final:

Instrucciones específicas: Da el nombre IUPAQ o la fórmula según corresponda a cada una de las siguientes moléculas orgánicas, coloca su fórmula condensada y anota el número de carbonos primarios, secundarios, terciarios y cuaternarios.

42). i	CH₂CH₃ CH₃CH₂CHCH₂CH₃
a)	Nombre:	

- b) Fórmula condensada
- c) Carbonos primarios, secundarios, terciarios y cuaternarios _____
- 43. 3,3-dietil-2,5-dimetilheptano
- a) Fórmula desarrollada

- b) Fórmula condensada
- c) Carbonos primarios, secundarios, terciarios y cuaternarios _____
- 44. 3-etil-5-isopropil-2,4-dimetiloctano
- a) Fórmula desarrollada

- b) Fórmula condensada
- c) Carbonos primarios, secundarios, terciarios y cuaternarios _____

45.

۵,	
b)	Fórmula condensada Carbonos primarios, secundarios, terciarios y cuaternarios
46.	

d)	Nombre:		
----	---------	--	--

a) Nombre:

- e) Fórmula condensada _____
- f) Carbonos primarios, secundarios, terciarios y cuaternarios _____

UNIDAD III: ABASTECIMIENTO DEL AGUA POTABLE: UN DESAFÍO VITAL.

TEORÍA: DEBERÁS ESTUDIAR LOS CONCEPTOS DE: PROPIEDADES DEL AGUA, DISTRIBUCIÓN DEL AGUA EN EL PLANETA, DISTRIBUCIÓN Y USOS PRINCIPALES DEL AGUA EN MÉXICO, HUELLA HÍDRICA, CÁLCULOS DE DISOLUCIONES PORCENTUALES Y MOLARES, PH Y POH DE ÁCIDOS Y BASES, TEORÍAS DE ACIDOS Y BASES.

- d) ¿Qué cantidad de hidróxido de sodio (NaOH) se debe pesar para preparar 300 mL de una disolución al 12% masa/volumen?
- e) Se requiere preparar 250 g de una disolución al 35% masa-masa de nitrito de oro (III), ¿Cuánto se requiere del soluto y cuánto del disolvente?
- f) Calcula el porcentaje volumen/volumen que tiene una disolución preparada con 200 mL de jarabe de horchata que se agregan a 500 mL de agua?
- g) ¿Cuál es la cantidad de sulfato de hierro (III) y la cantidad de agua que se requiere para preparar 300 g de una disolución al 6% m/m?
- h) Un blanqueador comercial se vende en botellas que contienen 2.5 L de disolución blanqueadora a base de hipoclorito de sodio como soluto. La solución de hipoclorito de sodio está al 2.33% m/v, ¿cuántos gramos hay de soluto en el producto comercial?
- i) Calcula el porcentaje volumen/volumen que tiene una disolución preparada con 100 mL de concentrado de tamarindo que se agrega a 900 mL de agua?

- j) ¿Qué cantidad de hidróxido de aluminio se debe pesar para preparar 500 mL de una disolución al 25% masa/volumen?
- k) ¿Cuál es la cantidad de hidróxido de litio y la cantidad de agua que se requiere para preparar 500 g de una disolución al 8% m/m?
- I) ¿Cuál es la concentración molar de una solución que contiene 35.7 g de ácido cítrico(C₆H8O₇) en 350 cm³ de disolución?
- m) ¿Cuántos gramos de hidróxido de sodio (NaOH) se tienen en 1 L de una disolución 0.3 M? [Datos de masas atómicas: Na= 23 g/mol, O= 16 g/mol, H= 1 g/mol]
- n) ¿Cuántos gramos de sulfato de sodio (Na₂SO₄) se tienen en 2.5 L de una disolución 1.4 M? [Datos de masas atómicas: Na= 23 g/mol, O= 16 g/mol, S= 32 g/mol]
- o) ¿Cuántos gramos de hidróxido de sodio (NaOH) se tienen en 0.5 L de una disolución 0.1 M? [Datos de masas atómicas: Na= 23 g/mol, O= 16 g/mol, H= 1 g/mol]
- p) Calcula el pH de una disolución con una concentración [OH⁻]= 1.0 x 10⁻5 M
- q) Calcula el pH de una disolución que tiene una concentración [H+]=1 x 10 -7 M
- r) Una disolución tiene un pH de 10 ¿Cuál es el valor de la concentración [H⁺]?
- s) Un jugo de manzana recién preparado tiene un pH de 3.8 ¿Cuál es el valor de la concentración [H⁺]?
- t) Una disolución tiene un pH de 12 ¿Cuál es el valor de la concentración [OH-]?
- u) ¿Cuál es la concentración de iones hidronio de una disolución cuyo pH es de 5?